Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Arq. gastroenterol ; 56(2): 113-117, Apr.-June 2019. tab, graf
Article in English | LILACS | ID: biblio-1019447

ABSTRACT

ABSTRACT BACKGROUND: Few studies regarding arthritic diseases have been performed to verify the presence of the neurodegeneration. Given the increased oxidative stress and extra-articular effects of the rheumatoid arthritis, the gastrointestinal studies should be further investigated aiming a better understanding of the systemic effects the disease on enteric nervous system. OBJECTIVE: To determine whether the rheumatoid arthritis affects the nitrergic density and somatic area of the nNOS- immunoreactive (IR) myenteric neurons, as well as the morphometric areas of CGRP and VIP-IR varicosities of the ileum of arthritic rats. METHODS: Twenty 58-day-old male Holtzmann rats were distributed in two groups: control and arthritic. The arthritic group received a single injection of the Freund's Complete Adjuvant in order to induce arthritis model. The whole-mount preparations of ileum were processed for immunohistochemistry to VIP, CGRP and nNOS. Quantification was used for the nitrergic neurons and morphometric analyses were performed for the three markers. RESULTS: The arthritic disease induced a reduction 6% in ileal area compared to control group. No significant differences were observed in nitrergic density comparing both groups. However, arthritic group yielded a reduction of the nitrergic neuronal somatic area and VIP-IR varicosity areas. However, an increase of varicosity CGRP-IR areas was also observed. CONCLUSION: Despite arthritis resulted in no alterations in the number of nitrergic neurons, the retraction of ileal area and reduction of nitrergic somatic and VIP-IR varicosity areas may suggest a negative impact the disease on the ENS.


RESUMO CONTEXTO: Poucos estudos sobre doenças artríticas têm sido realizados para verificar a presença de neurodegeneração. Diante do aumento do estresse oxidativo e dos efeitos extra-articulares da artrite reumatoide, estudos gastrointestinais devem ser investigados visando uma melhor compreensão dos efeitos sistêmicos da doença no sistema nervoso entérico. OBJETIVO: Determinar se a artrite reumatoide afeta a densidade nitrérgica e a área somática dos neurônios mioentéricos imunorreativos ao nNOS (nNOS-IR), bem como para as áreas morfométricas das varicosidades CGRP-IR e VIP-IR do íleo de ratos artríticos. MÉTODOS: Vinte ratos Holtzmann, com 58 dias de idade, foram distribuídos em dois grupos: controle e artrítico. O grupo artrítico recebeu uma única injeção do adjuvante completo de Freund para induzir o modelo de artrite. Os preparados totais de íleo foram processados para imuno-histoquímica ao VIP, CGRP e nNOS. A quantificação foi utilizada para os neurônios nitrérgicos e as análises morfométricas foram realizadas para os três marcadores. RESULTADOS: A doença artrítica induziu uma redução de 6% na área ileal em relação ao grupo controle. Não foram observadas diferenças significativas na densidade nitrérgica comparando os dois grupos. No entanto, o grupo artrítico produziu uma redução da área somática neuronal nitrérgica e da área das varicosidades do VIP-IR. Entretanto, foi observado um aumento das áreas das viricosidades CGRP-IR. CONCLUSÃO: Apesar da artrite não resultar em alterações no número de neurônios nitrérgicos, a retração da área ileal e a redução das áreas somática nitrérgica e das varicosidades do VIP-IR podem sugerir um impacto negativo da doença no sistema nervoso entérico.


Subject(s)
Animals , Male , Rats , Arthritis, Rheumatoid/physiopathology , Enteric Nervous System/physiopathology , Nitrergic Neurons/physiology , Nitric Oxide Synthase Type I/metabolism , Immunohistochemistry , Rats, Sprague-Dawley , Nitrergic Neurons/metabolism , Disease Models, Animal , Nitric Oxide Synthase Type I/physiology , Myenteric Plexus/physiopathology , Myenteric Plexus/metabolism
2.
Journal of Neurogastroenterology and Motility ; : 592-605, 2017.
Article in English | WPRIM | ID: wpr-14788

ABSTRACT

BACKGROUND/AIMS: Neuronal degeneration and changes in interstitial cells of Cajal (ICCs) are important mechanisms of age-related constipation. This study aims to compare the distribution of ICCs and neuronal nitric oxide synthase (nNOS) with regard to age-related changes between the ascending colon (AC) and descending colon (DC) in 6-, 31-, and 74-week old and 2-year old male Fischer-344 rats. METHODS: The amount of fecal pellet and the bead expulsion times were measured. Fat proportion in the muscle layer of the colon was analyzed by hematoxylin and eosin staining. Proto-oncogene receptor tyrosine kinase (KIT) and neuronal nitric oxide synthase (nNOS) expression were analyzed with Western blotting and immunohistochemistry. Isovolumetric contractile measurements and electrical field stimulation were used to assess smooth muscle contractility. RESULTS: Colon transit and bead expulsion slowed with senescence. Fat in the muscle layer accumulated with age in the AC, but not in the DC. The proportion of KIT-immunoreactive ICCs in the submucosal and myenteric plexus was higher in the DC than in the AC, and it declined with age, especially in the AC. In contrast, the proportion of NOS-immunoreactive neurons in the myenteric plexus was higher in the AC than in the DC, and both decreased in older rats. Nitric oxide levels declined with age in the DC. Muscle strip experiments showed that the inhibitory response mediated by nitric oxide in the circular direction of the DC was reduced in 2-year old rats. CONCLUSION: The AC and DC differ in their distribution of ICCs and nNOS, and age-related loss of nitrergic neurons more severely affects the DC than the AC.


Subject(s)
Animals , Humans , Male , Rats , Aging , Blotting, Western , Colon , Colon, Ascending , Colon, Descending , Constipation , Eosine Yellowish-(YS) , Hematoxylin , Immunohistochemistry , Interstitial Cells of Cajal , Muscle, Smooth , Myenteric Plexus , Neurons , Nitrergic Neurons , Nitric Oxide Synthase Type I , Nitric Oxide , Protein-Tyrosine Kinases , Proto-Oncogenes , Rats, Inbred F344
3.
Arq. neuropsiquiatr ; 73(9): 779-783, Sept. 2015. tab, ilus
Article in English | LILACS | ID: lil-757395

ABSTRACT

Nitric oxide (NO) is a major neurotransmitter associated with motor control in basal ganglia. Movement disorders, as essential tremor and Parkinson’s disease, are more prevalent on aged individuals. We investigated the effects of aging on neuronal density and diameter/area of nitrergic neurons in samples of striatum (caudate and putamen) and subthalamic nucleus of 20 human brains from normal subjects, stained by histochemistry for NADPH-diaphorase and immunohistochemistry for neuronal NO synthase. Our data showed aging does not modify the neuronal density and size of nitrergic neurons in striatum and subthalamic nucleus. These findings suggest a lack of association between aging and morphologic changes on nitrergic neurons.


O óxido nítrico (NO) é um importante neurotransmissor associado ao controle motor nos núcleos da base. Os distúrbios de movimento, como tremor essencial e a doença de Parkinson, são mais prevalentes em indivíduos idosos. Nós investigamos os efeitos do envelhecimento sobre a densidade neuronal e diâmetro/área dos neurônios nitrérgicos em amostras de estriado (caudado e putâmen) e núcleo subtalâmico de 20 encéfalos humanos de indivíduos normais, corados pela técnica histoquímica da NADPH-diaforase e imunohistoquímica para a sintase do NO neuronal. Nossos resultados mostraram que o envelhecimento não modifica a densidade neuronal e as dimensões dos neurônios nitrérgicos no estriado e núcleo subtalâmico. Estes achados sugerem uma falta de associação entre envelhecimento e mudanças morfológicas nos neurônios nitrérgicos.


Subject(s)
Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Aging/physiology , Corpus Striatum , Nitrergic Neurons/physiology , Subthalamic Nucleus , Immunohistochemistry , NADPH Dehydrogenase/analysis
4.
Journal of Neurogastroenterology and Motility ; : 51-61, 2015.
Article in English | WPRIM | ID: wpr-14536

ABSTRACT

BACKGROUND/AIMS: Inflammatory bowel disease is commonly accompanied by colonic dysmotility and causes changes in intestinal smooth muscle contractility. In this study, colonic smooth muscle contractility in a chronic inflammatory condition was investigated using smooth muscle tissues prepared from interleukin-10 knockout (IL-10(-/-)) mice. METHODS: Prepared smooth muscle sections were placed in an organ bath system. Cholinergic and nitrergic neuronal responses were observed using carbachol and electrical field stimulation with L-NG-nitroarginine methyl ester (L-NAME). The expression of interstitial cells of Cajal (ICC) networks, muscarinic receptors, neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) was observed via immunofluorescent staining. RESULTS: The spontaneous contractility and expression of ICC networks in the proximal and distal colon was significantly decreased in IL-10(-/-) mice compared to IL-10(+/+) mice. The contractility in response to carbachol was significantly decreased in the proximal colon of IL-10(-/-) mice compared to IL-10(+/+) mice, but no significant difference was found in the distal colon. In addition, the expression of muscarinic receptor type 2 was reduced in the proximal colon of IL-10(-/-) mice. The nictric oxide-mediated relaxation after electrical field stimulation was significantly decreased in the proximal and distal colon of IL-10(-/-) mice. In inflamed colon, the expression of nNOS decreased, whereas the expression of iNOS increased. CONCLUSIONS: These results suggest that damage to the ICC network and NOS system in the proximal and distal colon, as well as damage to the smooth muscle cholinergic receptor in the proximal colon may play an important role in the dysmotility of the inflamed colon.


Subject(s)
Animals , Mice , Baths , Carbachol , Colon , Inflammatory Bowel Diseases , Interleukin-10 , Interstitial Cells of Cajal , Mice, Knockout , Muscle, Smooth , Nitrergic Neurons , Nitric Oxide Synthase Type I , Nitric Oxide Synthase Type II , Receptors, Muscarinic , Relaxation
5.
Arq. gastroenterol ; 51(2): 102-106, Apr-Jun/2014. tab, graf
Article in English | LILACS | ID: lil-713591

ABSTRACT

Context The rectal distension in dogs increases the rate of transitory lower esophageal sphincter relaxation considered the main factor causing gastroesophageal reflux. Objectives The aim of this study was evaluate the participation of the nitrergic pathway in the increased transitory lower esophageal sphincter relaxation rate induced by rectal distension in anesthetized dogs. Methods Male mongrel dogs (n = 21), weighing 10-15 kg, were fasted for 12 hours, with water ad libitum. Thereafter, they were anesthetized (ketamine 10 mg.Kg-1 + xylazine 20 mg.Kg-1), so as to carry out the esophageal motility evaluation protocol during 120 min. After a 30-minute basal period, the animals were randomly intravenous treated whith: saline solution 0.15M (1ml.Kg-1), L-NAME (3 mg.Kg-1), L-NAME (3 mg.Kg-1) + L-Arginine (200 mg.Kg-1), glibenclamide (1 mg.Kg-1) or methylene blue (3 mg.Kg-1). Forty-five min after these pre-treatments, the rectum was distended (rectal distension, 5 mL.Kg-1) or not (control) with a latex balloon, with changes in the esophageal motility recorded over 45 min. Data were analyzed using ANOVA followed by Student Newman-Keuls test. Results In comparison to the respective control group, rectal distension induces an increase in transitory lower esophageal sphincter relaxation. Pre-treatment with L-NAME or methylene blue prevents (P<0.05) this phenomenon, which is reversible by L-Arginine plus L-NAME. However, pretreating with glibenclamide failed to abolish this process. Conclusions Therefore, these experiments suggested, that rectal distension increases transitory lower esophageal sphincter relaxation in dogs via through nitrergic pathways. .


Contexto A distensão retal aumenta a taxa de relaxamento transitório do esfíncter esofágico inferior em cães, sendo o relaxamento transitório do esfíncter esofágico inferior considerado o principal fator responsável pelo refluxo gastroesofágico. Objetivos Avaliar a participação da via nitrérgica no aumento da taxa relaxamento transitório do esfíncter esofágico inferior induzida por distensão retal em cães anestesiados. Métodos Cães sem raça definida, machos (n = 21), pesando entre 10-15 kg, foram mantidos em jejum durante 12 horas, no entanto, com água ad libitum. Depois disso, eles foram anestesiados (cetamina 10 mg.Kg-1 + xilazina 20 mg.Kg-1), para a realização do protocolo de avaliação da motilidade esofágica durante 120 minutos. Após um período basal de 30 minutos, os animais foram aleatoriamente tratados intravenosa com: solução salina 0,15 (1 ml.Kg-1), L-NAME (3 mg.Kg-1), L-NAME (3 mg.Kg-1) + L-arginina (200 mg.Kg-1), glibenclamida (1 mg.Kg-1) e azul de metileno (3 mg.Kg-1). Quarenta e cinco minutos após os pré-tratamentos, o reto foi distendido com um balão de látex (DR, 5 mg.Kg-1) ou não (grupo controle), e as variações da motilidade esofágica foram registradas e gravadas ao longo dos 45 minutos seguintes. Os dados foram analisados utilizando-se ANOVA seguido pelo teste de Student Newman-Keuls. Resultados Em comparação com o respectivo grupo controle, a distensão retal demonstrou induzir um aumento na taxa de relaxamento transitório do esfíncter esofágico inferior. O pré-tratamento com L -NAME ou azul de metileno impediu (P<0,05) este fenômeno, que foi reversível após a administração de L-Arginina + L-NAME. No entanto, o pré-tratamento com a glibenclamida não ...


Subject(s)
Animals , Dogs , Male , Esophageal Sphincter, Lower/physiology , Esophagogastric Junction/physiology , Nitrergic Neurons/metabolism , Nitroarginine/pharmacology , Peristalsis/physiology , Rectum/physiology , Gastrointestinal Motility/physiology , Manometry , Nitrergic Neurons/drug effects , Nitrergic Neurons/enzymology , Reflex/physiology
6.
Braz. j. morphol. sci ; 30(1): 28-32, 2013. tab, ilus
Article in English | LILACS | ID: lil-699325

ABSTRACT

The 2,4 dichlorophenoxyacetic acid (2,4-D) is a systemic herbicide whose effects in animal organic systemshave been examined in previous studies, being the neurotoxicity considered the predominant effect. However,the studies that detect the 2,4-D neurotoxicity have merely focused in the central nervous system, andtherefore, little is known about the effect of this herbicide in the enteric nervous system. This study aimedto verifying the 2,4-D effects on the myenteric neurons in duodenum of Wistar rats. Ten 60-day-old maleWistar rats (Rattus norvegicus) were divided in two groups: control group (C) that did not receive 2,4-D andexperimental group (E) that received 5.0 mg of 2,4-D/kg for 15 days. At the end of experimental period, theanimal were euthanized, the duodenum was collected and processed for NADPH-diaphorase histochemicalanalysis in order to expose the nitrergic myenteric neurons (NADPH-dp). In the light microscopy analysis, thewhole-mount preparation obtained from duodenum of each animal were image-captured in 120 and 40 fields,for quantitative and morphometric analyses of myenteric neurons, respectively. The neuronal density was notaffected when comparing the two groups, but an increase (p > 0.05) of 8.5% was observed in the cell bodyarea of neurons in the E group. In conclusion, the ingestion of 2,4-D at a dosage of 5.0 mg/kg body weightfor 15 days does not change the neuronal density, but promotes the hypertrophy of NADPH-dp myentericneurons in duodenum of the rats of this study.


Subject(s)
Animals , Male , Rats , /toxicity , Herbicides/toxicity , Intestine, Small , NADPH Dehydrogenase/analysis , Nitrergic Neurons , Myenteric Plexus , Control Groups , Euthanasia, Animal , Rats, Wistar , Data Interpretation, Statistical
7.
Journal of Neurogastroenterology and Motility ; : 161-170, 2013.
Article in English | WPRIM | ID: wpr-86424

ABSTRACT

BACKGROUND/AIMS: Type 1 diabetes is often accompanied by gastrointestinal motility disturbances. Vagal neuropathy, hyperglycemia, and alterations in the myenteric plexus have been proposed as underlying mechanism. We therefore studied the relationship between vagal function, gastrointestinal motiliy and characteristics of the enteric nervous system in the biobreeding (BB) rat known as model for spontaneous type 1 diabetes. METHODS: Gastric emptying breath test, small intestinal electromyography, relative risk-interval variability, histology and immunohistochemistry on antral and jejunal segments were performed at 1, 8 and 16 weeks after diabetes onset and on age-matched controls. RESULTS: We observed no consistent changes in relative risk-interval variability and gastric emptying rate. There was however, a loss of phases 3 with longer duration of diabetes on small intestinal electromyography. We found a progressive decrease of nitrergic neurons in the myenteric plexus of antrum and jejunum, while numbers of cholinergic nerve were not altered. In addition, a transient inflammatory infiltrate in jejunal wall was found in spontaneous diabetic BB rats at 8 weeks of diabetes. CONCLUSIONS: In diabetic BB rats, altered small intestinal motor control associated with a loss of myenteric nitric oxide synthase expression occurs, which does not depend on hyperglycemia or vagal dysfunction, and which is preceded by transient intestinal inflammation.


Subject(s)
Animals , Rats , Breath Tests , Carbamates , Diabetes Mellitus , Electromyography , Enteric Nervous System , Gastric Emptying , Gastrointestinal Motility , Hyperglycemia , Immunohistochemistry , Inflammation , Jejunum , Myenteric Plexus , Nitrergic Neurons , Nitric Oxide Synthase , Organometallic Compounds , Rats, Inbred BB
8.
Korean Journal of Urology ; : 333-338, 2013.
Article in English | WPRIM | ID: wpr-85910

ABSTRACT

PURPOSE: The location of acetylcholinesterase-containing nerve fibers suggests a role for acetylcholine in both contractility and secretion in the prostate gland. The colocalization of nitrergic nerves with cholinergic nerves, and the cotransmission of nitric oxide with acetylcholine in cholinergic nerves, has been demonstrated in the prostate glands of various species. Thus, we investigated the effects of acetylcholine on phenylephrine-induced contraction and the correlation between cholinergic transmission and nitric oxide synthase by using isolated prostate strips of rabbits. MATERIALS AND METHODS: Isolated prostate strips were contracted with phenylephrine and then treated with cumulative concentrations of acetylcholine. Changes in acetylcholine-induced relaxation after preincubation with NG-nitroarginine methyl ester, 7-nitroindazole, and aminoguanidine were measured. The effects of selective muscarinic receptor antagonists were also evaluated. RESULTS: In the longitudinal phenylephrine-contracted strip, the cumulative application of acetylcholine (10(-9) to 10(-4) M) elicited a concentration-dependent relaxation effect. Acetylcholine-induced relaxation was inhibited not only by nitric oxide synthase inhibitors (10 microM L-NAME or 10 microM 7-nitroindazole) but also by 10 microM atropine and some selective muscarinic receptor antagonists (10(-6) M 11-([2-[(diethylamino)methyl]-1-piperdinyl]acetyl)-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one and 10(-6) M 4-diphenylacetoxy-N-methyl-piperidine). In contrast, relaxation was significantly increased by pretreatment of the strips with 10 mM L-arginine. CONCLUSIONS: Acetylcholine relaxed phenylephrine-induced contractions of isolated rabbit prostate strips. This relaxation may be mediated via both cholinergic and constitutive nitric oxide synthase with both the M2 and M3 receptors possibly playing key roles.


Subject(s)
Acetylcholine , Atropine , Contracts , Guanidines , Indazoles , Nerve Fibers , Neurons , NG-Nitroarginine Methyl Ester , Nitrergic Neurons , Nitric Oxide , Nitric Oxide Synthase , Nitric Oxide Synthase Type I , Phenylephrine , Prostate , Receptor, Muscarinic M2 , Receptor, Muscarinic M3 , Receptors, Muscarinic , Relaxation
9.
Int. j. morphol ; 27(3): 939-945, sept. 2009. ilus
Article in English | LILACS | ID: lil-598960

ABSTRACT

Effects of protein and B-complex vitamin deficiency were assessed with respect to the morphometry of myenteric neurons in the descending colon of adult rats. Sixteen animals were divided into two groups: Control Group (CG, n=8) and Experimental Group (EG, n=8). The CG received 22 percent protein chow and the EG received 4 percent protein chow for 120 days. The descending colon was submitted to NADH- and NADPH-diaphorase technique in order to evidence nervous cells in the whole mounts preparations. In the EG, NADH-d positive neurons presented reduced nuclei, while NADPH-d positive neurons showed atrophy of the soma area (~41.7 percent) inducing an increase of the proportion occupied by the nucleus inside in the soma of these cells.


Esta investigación buscó evaluar los efectos de la desnutrición proteica y vitamínica delcomplexo B sobre aspectos morfométricos del plexo mientérico del colon descendente de ratones adultos. Dieciséis animales fueron distribuidos en dos grupos: control que recibieron ración comercial con 22 por ciento de proteína y experimental alimentados con ración de tenor proteico reducido para 8 por ciento, durante 120 días. Neuronas del plexo mientérico presentes en preparados totales fueron evidenciados a través de la técnica histoquímica de la NADH-diaforasa y de la NADPH-diaforasa. En el grupo experimental, las neuronas NADH-d positivos sufrieron reducción del núcleo celular, ya las neuronas NADPH-d sufrieron atrofia de 41,7 por ciento de la superficie de su pericarion, lo que hizo con que el núcleo celular pasase a ocupar una mayor proporción de la región trófica de las neuronas.


Subject(s)
Animals , Male , Female , Mice , Colon/anatomy & histology , Colon/innervation , Nitrergic Neurons , Nitrergic Neurons/ultrastructure , Neuronal Plasticity , Atrophy/chemically induced , Atrophy/pathology , Atrophy/veterinary , Myenteric Plexus/anatomy & histology , Myenteric Plexus/ultrastructure , Rats, Wistar/anatomy & histology
10.
Chinese Journal of Applied Physiology ; (6): 218-220, 2007.
Article in Chinese | WPRIM | ID: wpr-253441

ABSTRACT

<p><b>AIM</b>To investigate the effect of acute exhaustive exercise on gastrointestinal motility and its enteric nervous mechanisms.</p><p><b>METHODS</b>24 rats were randomly divided into control group (C) and acute exhaustive exercise group (AEE). The rate of gastrointestinal transit was measured and histologic changes of nitriergic nerves in ileum myenteric plexus were observed with enzymatic histochemical and image analytic technique.</p><p><b>RESULTS</b>In the rats of AEE group, the rate of gastrointestinal transit was delayed comparing with C group (P < 0.05), the numbers of nitrergic neurons and expression levels of nitric oxide synthase (NOS) in the ileum myenteric plexus significantly increased comparing with C group (P < 0.01).</p><p><b>CONCLUSION</b>It is possible that increase of nitrergic neurons and expression levels of NOS in the myenteric plexus of small intestine are one of the mechanisms of delay of gastrointestinal transit rate in acute exhaustive exercise rats.</p>


Subject(s)
Animals , Male , Rats , Gastrointestinal Motility , Physiology , Gastrointestinal Transit , Physiology , Ileum , Motor Activity , Myenteric Plexus , Metabolism , Nitrergic Neurons , Cell Biology , Nitric Oxide Synthase , Metabolism , Rats, Sprague-Dawley
11.
Journal of Veterinary Science ; : 143-150, 2006.
Article in English | WPRIM | ID: wpr-91386

ABSTRACT

Nitric oxide (NO) is a non-adrenergic, non-cholinergic neurotransmitter found in the enteric nervous system that plays a role in a variety of enteropathies, including inflammatory bowel disease. Alteration of nitrergic neurons has been reported to be dependent on the manner by which inflammation is caused. However, this observed alteration has not been reported with acetic acid-induced colitis. Therefore, the purpose of the current study was to investigate changes in nitrergic neuromuscular transmission in experimental colitis in a rat model. Distal colitis was induced by intracolonic administration of 4% acetic acid in the rat. Animals were sacrificed at 4 h and 48 h postacetic acid treatment. Myeloperoxidase activity was significantly increased in the acetic acid-treated groups. However, the response to 60 mM KCl was not significantly different in the three groups studied. The amplitude of phasic contractions was increased by Nomega-nitro-L-arginine methyl ester (L-NAME) in the normal control group, but not in the acetic acid-treated groups. Spontaneous contractions disappeared during electrical field stimulation (EFS) in normal group. However, for the colitis groups, these contractions initially disappeared, and then reappeared during EFS. Moreover, the observed disappearance was diminished by L-NAME; this suggests that these responses were NO-mediated. In addition, the number of NADPH-diaphorase positive nerve cell bodies, in the myenteric plexus, was not altered in the distal colon; whereas the area of NADPH-diaphorase positive fibers, in the circular muscle layer, was decreased in the acetic acidtreated groups. These results suggest that NO-mediated inhibitory neural input, to the circular muscle, was decreased in the acetic acid-treated groups.


Subject(s)
Animals , Male , Rats , Acetic Acid/toxicity , Colitis/chemically induced , Colon/drug effects , Indicators and Reagents/toxicity , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Myenteric Plexus/pathology , NADPH Dehydrogenase/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Neuromuscular Junction/drug effects , Nitrergic Neurons/drug effects , Nitric Oxide/metabolism , Peroxidase/metabolism , Potassium Chloride/pharmacology , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL